ROBERT L JERRARD, University of Toronto

Existence and uniqueness of minimizers of general least gradient problems

Motivated by problems arising in conductivity imaging, we prove existence, uniqueness, and comparison theorems - under certain sharp conditions - for minimizers of the general least gradient problem

$$\inf_{u\in BV_f(\Omega)}\int_{\Omega}\varphi(x,Du),$$

where $f: \partial \Omega \to \mathbb{R}$ is continuous,

$$BV_f(\Omega) := \{ v \in BV(\Omega) : \forall x \in \partial\Omega, \lim_{r \to 0} \operatorname{ess\,} \sup_{y \in \Omega, |x-y| < r} |f(x) - v(y)| = 0 \}$$

and $\varphi(x,\xi)$ is a function that, among other properties, is convex and homogeneous of degree 1 with respect to the ξ variable. In particular we prove that if $a \in C^{1,1}(\Omega)$ is bounded away from zero, then minimizers of the weighted least gradient problem $\inf_{u \in BV_f} \int_{\Omega} a |Du|$ are unique in $BV_f(\Omega)$. We construct counterexamples to show that the regularity assumption $a \in C^{1,1}$ is sharp, in the sense that it can not be replaced by $a \in C^{1,\alpha}(\Omega)$ with any $\alpha < 1$. This is joint work with Amir Moradifam and Adrian Nachman.