DAMIR DZHAFAROV, University of Connecticut *Computable, uniform, and strong reductions*

In reverse mathematics, one establishes connections between mathematical principles by proving implications over the base theory RCA_0 . In practice, such implications are often due to the presence of considerably stronger computability-theoretic reducibilities holding between the principles, which are then merely formalized in second-order arithmetic. For instance, a typical implication $P \rightarrow Q$ of Π_2^1 principles is a formalized *uniform* reduction, meaning that there are functionals Φ and Ψ such that, if A is any instance of P, then $\Phi(A)$ is an instance of Q, and if S is any solution to $\Phi(A)$, then $\Psi(A \oplus S)$ is a solution to A. The systematic study of this and related reducibilities in the specific context of Π_2^1 principles has recently emerged as a fruitful enterprise alongside traditional reverse mathematics. On the one hand, it offers a much finer way of calibrating the relative strength of mathematical propositions, and on the other, it sheds light on several open questions from the traditional analysis. This talk will present a summary of results and problems in this direction. In particular, I will discuss the longstanding open question of whether the stable form of Ramsey's theorem for pairs (SRT_2^2) implies the cohesive principle (COH) in standard models of RCA_0 , and the growing number of recent results towards a negative answer.