JUAN MIGLIORE, University of Notre Dame

Secant varieties to the varieties of reducible hypersurfaces

Let $S = k[x_1, \ldots, x_n]$ be the standard graded polynomial ring, where k is an algebraically closed field. Let $\lambda = [d_1, \ldots, d_r]$ be a partition of a positive integer d into $r \ge 2$ parts. In \mathbb{P}^{N-1} , where $N = \binom{d+n-1}{n-1}$, we have $\mathbb{X}_{n-1,\lambda}$, the variety of reducible hypersurfaces (forms) of type λ . The dimension of $\mathbb{X}_{n-1,\lambda}$ is well known, and there is a well-known formula for the expected dimension of the variety $\sigma_{\ell}(\mathbb{X}_{n-1,\lambda})$ spanned by the secant $\mathbb{P}^{\ell-1}$'s to $\mathbb{X}_{n-1,\lambda}$ in \mathbb{P}^{N-1} . When this expected dimension is not achieved, $\sigma_{\ell}(\mathbb{X}_{n-1,\lambda})$ is address. We compute the precise dimension of $\sigma_{\ell}(\mathbb{X}_{n-1,\lambda})$ in many new cases, identifying the instances when $\sigma_{\ell}(\mathbb{X}_{n-1,\lambda})$ is defective. We furthermore give a conjecture that, if true, would explicitly give the precise dimension of $\sigma_{\ell}(\mathbb{X}_{n-1,\lambda})$ in all cases. This conjecture is based on the Weak Lefschetz Property for a certain collection of graded artinian algebras. This is joint work in progress with M. Catalisano, A.V. Geramita, A. Gimigliano, B. Harbourne, U. Nagel and Y.S. Shin.