ROMYAR SHARIFI, University of Arizona

The arithmetic of modular symbols
That the geometry of modular curves has something to say about the arithmetic of cyclotomic fields has long been known. Out of the 2-dimensional Galois representation attached to a level p newform congruent to an Eisenstein series modulo p, Ribet constructed a p-torsion subgroup of the class group of the p th cyclotomic field $\mathbb{Q}\left(\mu_{p}\right)$. In their proof of the Iwasawa main conjecture, Mazur and Wiles similarly found the entire minus part of the p-part of the class group of any cyclotomic field. We conjecture a more precise relationship: the quotient by an Eisenstein ideal of the space of cusp forms of some level N should be isomorphic to a cohomology group closely related to the class group of $\mathbb{Q}\left(\mu_{N}\right)$ via a very simple map ϖ taking modular symbols to cup products of cyclotomic units. This map ϖ has a conjectural inverse Υ constructed from modular representations. Fukaya and Kato have proven a major result towards this conjecture. We intend to describe both the conjecture and the best understood of many hoped for analogues, which is to say for the function field $\mathbb{F}_{q}(t)$ in place of \mathbb{Q}. The work on this analogue is joint with Takako Fukaya and Kazuya Kato.

