HEXI YE, University of Toronto
Torsion points and the Lattes family
We give a dynamical proof of a result of Masser and Zannier: there are only finitely many parameters $t \in \mathbb{C}$ for which points $P_{t}=(2, \sqrt{2(2-t)})$ and $Q_{t}=(3, \sqrt{6(3-t)})$ are both torsion on the Legendre elliptic curve $E_{t}=\left\{y^{2}=x(x-1)(x-t)\right\}$. A key ingredient in the proof is the arithmetic equidistribution theorem on \mathbb{P}^{1} of Baker-Rumely, Favre- Rivera-Letelier and Chambert-Loir, applied to parameters $t \in \overline{\mathbb{Q}}$ for which a given point $a \in \overline{\mathbb{Q}}$ is preperiodic for the degree-4 Lattes family $f_{t}: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$. Our main new results involve complex dynamics and potential theory: (1) for each $c \in \mathbb{C}(t)$, the bifurcation measure μ_{c} for the pair $\left(f_{t}, c\right)$ has continuous potential across the singular parameters $t=0,1, \infty$; and (2) for distinct points $a, b \in \mathbb{C} \backslash\{0,1\}$, the bifurcation measures μ_{a} and μ_{b} cannot coincide. We also compute the homogeneous capacity of the bifurcation set for each marked point $c \in \mathbb{C}(t)$.

