## YAIZA CANZANI, McGill University

Distribution of randomly propagated Schrödinger eigenfunctions

This is joint work with Dmitry Jakobson and John Toth. Let  $(M, g_0)$  be a compact Riemmanian manifold, and  $V \in C^{\infty}(M)$ . Let  $P_0(h) := -h^2 \Delta_{g_0} + V$ , be the semiclassical Schrödinger operator for  $h \in (0, h_0]$ . If  $\varphi_h$  is an  $L^2$ -normalized eigenfunction of  $P_0(h)$ , then  $\int_A |\varphi_h(x)|^2 dv_{g_0}(x)$  is interpreted as the probability that a quantum particle of energy  $\sim 1/h^2$  belongs to  $A \subset M$ . For a quantum particle with initial state  $\varphi_h$ , its evolution at time t is described by the same probability density since  $|e^{-\frac{it}{h}P_0(h)}\varphi_h| = |\varphi_h|$ . However, since real life systems are usually affected by "noise", the time evolution is better decribed by the state

$$\varphi_h^{(u)}(x) = e^{-\frac{it}{h}P_u(h)}\varphi_h$$

where  $P_u(h)$  is some small perturbation of  $P_0(h)$ .

In this talk we consider a smooth family of perturbations  $g_u$  of the reference metric  $g_0$  for  $u \in \mathcal{B}^k(\varepsilon) \subset \mathbb{R}^k$  of radius  $\varepsilon > 0$ , and consider the perturbed Schrödinger operators  $P_u(h) := -h^2 \Delta_{g_u} + V$ . For t > 0 small, we study the moments of the real part of the perturbed eigenfunctions regarded as random variables

$$Re\left(\varphi_h^{(\cdot)}(x)
ight):\mathcal{B}^k(arepsilon) o\mathbb{R}\qquad ext{for }x\in M.$$