XINGFU ZOU, University of Western Ontario On a DDE model describing malaria transmission dynamics in a patch environment I will present some results on a DDE model that describes the transmission dynamics of malaria over a patchy environment. The model incorporates two important factors into the classic Ross-McDonand model: disease latencies in both humans and mosquitoes, and dispersal of humans between patches. The basic reproduction number \mathcal{R}_0 of model is identified by the theory of the next generation operator for structured disease models and the dynamics of the model is investigated in terms of \mathcal{R}_0 . It is shown that the disease free equilibrium is asymptotically stable if $\mathcal{R}_0 < 1$, and it is unstable if $\mathcal{R}_0 > 1$; in the latter case, the disease is endemic in the sense that the variables for the infected compartments are uniformly persistent. For the case of two patches, more explicit formulas for \mathcal{R}_0 are derived by which, impacts of the dispersal rates as well as the latency delays on disease dynamics are explored. Some numerical computations for \mathcal{R}_0 in terms of dispersal rates are carried out, which visually show that the impacts could be very complicated: in certain range of the parameters, \mathcal{R}_0 is increasing with respect to a dispersal rate while in some other range, it can be decreasing with respect to the same dispersal rate. This is a joint work with Dr. Yanyu Xiao.