As an extension of the Vandermonde Convolution formula
\[\sum_{m=0}^{n} \left(\begin{array}{c} \alpha \\ \gamma - m \end{array} \right) \left(\begin{array}{c} \beta \\ m \end{array} \right) = \left(\begin{array}{c} \alpha + \beta \\ \gamma \end{array} \right), \]

an explicit expression for the sum
\[\sum_{m=0}^{n} m(m-1)(m-\zeta+1) \left(\begin{array}{c} \alpha \\ \gamma - m \end{array} \right) \left(\begin{array}{c} \beta \\ m \end{array} \right) \]
is obtained, where \(\left(\begin{array}{c} n \\ r \end{array} \right) = \frac{n!}{(n-r)!r!} \) denotes the binomial coefficient. Some examples for the application of the result are considered.