SEAN COX, Universität Münster *Catching antichains*

The notion of antichain catching appeared in the Foreman-Magidor-Shelah paper on Martin's Maximum, and was used extensively in Woodin's proofs of the presaturation of various stationary tower forcings. For normal ideals \mathcal{I} and \mathcal{J} , let us say that \mathcal{J} catches \mathcal{I} (and write $catch(\mathcal{J},\mathcal{I})$) iff \mathcal{J} has sufficiently large support, the \mathcal{J} -positive sets project onto the \mathcal{I} -positive sets in a certain canonical manner (as ideals), and whenever $G \subset (\mathcal{J}^+, \mathbb{C})$ is generic then the projection of G is generic for $(\mathcal{I}^+, \mathbb{C})$. Certain instances of $catch(\mathcal{J},\mathcal{I})$ are equivalent to saturation of \mathcal{I} (namely when \mathcal{J} is the conditional club filter relative to \mathcal{I} ; see Foreman's chapter in Handbook of Set Theory). But in general the statement:

"there exists a ${\mathcal J}$ such that $catch({\mathcal J},{\mathcal I})$ "

is strictly weaker than saturation of \mathcal{I} and strictly stronger than precipitousness of \mathcal{I} . I will discuss this result and others from some joint work with Martin Zeman; I will also discuss some joint work with Matteo Viale which made use of related notions.