We study the one dimensional discrete random Schrodinger operator

\[(H_n \psi)_\ell = \psi_{\ell-1} + \psi_{\ell+1} + v_{\ell} \psi_\ell,\]

\(\psi_0 = \psi_{n+1} = 0,\) in the scaling limit \(\text{Var}(v_\ell) = \sigma^2/n.\) We show that, in the bulk of spectrum, the eigenfunctions are delocalized and that there is a very strong repulsion of eigenvalues. The analysis is based on a stochastic differential equation for the evolution of products of transfer matrices. This talk is based on a joint work with Benedek Valko and Balint Virag.