Abstract: A constellation is a higher dimensional analogue of an arithmetic progression, namely something of the shape \(\{x, x + te_1, \ldots, x + te_d\} \in \mathbb{Z}^d \), where \(t \in \mathbb{Z} \) and \(x, e_1, \ldots, e_d \in \mathbb{Z}^d \). We discuss finding such patterns lying inside a relatively dense subsets of \(P^d \), where \(P \) denotes the set of primes. While the case for general sets of \(\{e_j\} \) remains open, if the \(i^{th} \) coordinate of the \(e_j \) is distinct in \(j \) for each \(i \), the existence of infinitely many constellations of this shape is shown. This is joint work with Ákos Magyar.