PETER DUREN, Department of Mathematics, University of Michigan, Ann Arbor, MI 48109-1043, USA *Schwarzian derivatives of convex mappings*

For a function f analytic and locally univalent in the unit disk \mathbb{D} , the Schwarzian derivative is $Sf = (f''/f')' - \frac{1}{2}(f''/f')^2$ and the Schwarzian norm is $||Sf|| = \sup_{z \in \mathbb{D}} (1 - |z|^2)^2 |Sf(z)|$. In 1949, Nehari proved that $||Sf|| \le 2$ implies that f is univalent in \mathbb{D} . In 1976 he showed conversely that $||Sf|| \le 2$ if f maps the disk univalently onto a convex region. We give a simple proof based only on the Schwarz lemma.

Nehari also claimed to show that ||Sf|| < 2 for bounded convex mappings. We verify this by proving more generally that the image of a convex mapping with ||Sf|| = 2 cannot be a quasidisk.

Joint work with Martin Chuaqui and Brad Osgood.