ADAM VAN TUYL, Lakehead University

Nilpotent zero-nonzero patterns over finite fields

A zero-nonzero (znz) pattern \mathcal{A} is a square matrix whose entries come from the set $\{*, 0\}$ where * denotes a nonzero entry. Fix a field \mathbb{F} . We then set $Q(\mathcal{A}, \mathbb{F}) = \{A \in M_n(\mathbb{F}) : (A)_{i,j} \neq 0 \Leftrightarrow (\mathcal{A})_{i,j} = *$ for all $i, j\}$. An element $A \in Q(\mathcal{A}, \mathbb{F})$ is called a matrix realization of \mathcal{A} . A znz-pattern \mathbb{A} is said to be potentially nilpotent over \mathbb{F} if there exists a matrix realization Asuch that $A^k = 0$ for some positive integer k. In this talk I will discuss the problem of classifying the znz-patterns that are potentially nilpotent, and how one can use techniques from commutative algebra when working on this question. This is joint work with Keven N. Vander Meulen.