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Computationally discovered and proved generating functions

This lecture will describe older and very recent work [2], [4] in which Bailey, Bradley and I hunted for various desired generating
functions for zeta functions and then were able to methodically prove our results.

One example is
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The constant term in (1) recovers the well known identity
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Equivalently, for each positive integer k one has the generalized hypergeometric identity
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As I hope to show, discovering (1) and then proving (2) formed one of the most satisfying experimental mathematics experiences
I have had. I will also describe more recent work to appear in [3, 2008] regarding
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