ERICH KALTOFEN, North Carolina State University

Expressing a Fraction of Two Determinants as a Determinant
Suppose the polynomials f and g in $\mathrm{K}\left[x_{1}, \ldots, x_{r}\right]$ over the field K are determinants of $m \times m$ and $n \times n$ matrices, respectively, whose entries are in $\mathrm{K} \cup\left\{x_{1}, \ldots, x_{r}\right\}$. Furthermore, suppose $h=f / g$ is a polynomial in $\mathrm{K}\left[x_{1}, \ldots, x_{r}\right]$ and suppose that K has at least $m+1$ elements. We construct an $s \times s$ matrix C whose entries are in $\mathrm{K} \cup\left\{x_{1}, \ldots, x_{r}\right\}$, such that $h=\operatorname{det}(C)$ and $s=O\left((m+n)^{6}\right)$. Our problem was motivated by resulant formulas derived from Chow forms.
Additionally, we show that divisions can be removed from formulas that compute polynomials in the input variables over a sufficiently large field within polynomial formula size growth.
This is joint work with Pascal Koiran at the ENS Lyon, France.

