MICHAEL CAVERS, University of Regina, Department of Mathematics and Statistics, Regina, SK S4S 0A2, Canada *Reducible inertially arbitrary matrix patterns*

An *n* by *n* nonzero (resp. sign) pattern A is a matrix with entries in $\{*, 0\}$ (resp. $\{+, -, 0\}$). The inertia of a matrix *A* is the ordered triple (a_1, a_2, a_3) of nonnegative integers where a_1 (resp. a_2 and a_3) is the number of eigenvalues of *A* with positive (resp. negative and zero) real part. A is inertially arbitrary if each nonnegative integer triple (a_1, a_2, a_3) with $a_1 + a_2 + a_3 = n$ is the inertia of a matrix with nonzero (resp. sign) pattern A. Some observations regarding which inertias A and B may allow to guarantee $A \oplus B$ is inertially arbitrary are presented. It is shown that there exists non-inertially-arbitrary nonzero (resp. sign) patterns A and B such that $A \oplus B$ is inertially arbitrary.