MICHAEL CAVERS, University of Regina, Department of Mathematics and Statistics, Regina, SK S4S 0A2, Canada Reducible inertially arbitrary matrix patterns

An n by n nonzero (resp. sign) pattern \mathcal{A} is a matrix with entries in $\{*, 0\}$ (resp. $\{+,-, 0\}$). The inertia of a matrix A is the ordered triple $\left(a_{1}, a_{2}, a_{3}\right)$ of nonnegative integers where a_{1} (resp. a_{2} and a_{3}) is the number of eigenvalues of A with positive (resp. negative and zero) real part. \mathcal{A} is inertially arbitrary if each nonnegative integer triple $\left(a_{1}, a_{2}, a_{3}\right)$ with $a_{1}+a_{2}+a_{3}=n$ is the inertia of a matrix with nonzero (resp. sign) pattern \mathcal{A}. Some observations regarding which inertias \mathcal{A} and \mathcal{B} may allow to guarantee $\mathcal{A} \oplus \mathcal{B}$ is inertially arbitrary are presented. It is shown that there exists non-inertially-arbitrary nonzero (resp. sign) patterns \mathcal{A} and \mathcal{B} such that $\mathcal{A} \oplus \mathcal{B}$ is inertially arbitary.

