RAYMUNDO BAUTISTA, UNAM, Instituto de Matemáticas, Campus Morelia, Apartado Postal 61-3 (Xangari), CP 58089 Morelia, Michoacan, México

Generic complexes and derived representation type for Artin algebras

Let A be an Artin algebra and D(A) its bounded derived category. We recall that D(A) is called discrete and A derived discrete if for any sequence $h = (h_i)_{i \in \mathbb{Z}}$ of non-negative integers with almost all the $h_i = 0$, there are only finitely many isoclasses of indecomposable objects $X \in D(A)$ with length of $H^i(X) = h_i$ for all $i \in \mathbb{Z}$.

We prove the following:

Theorem The Artin algebra A is not derived discrete if and only if there is a bounded complex of projective A-modules $X = (X^i, d_X^i)$ with the following properties:

- (i) for all i the image of d_X^i is in the radical of X^{i+1} ;
- (ii) X is indecomposable in the homotopy category of complexes;
- (iii) there is some j such that $H^{j}(X)$ has not finite length;
- (iv) for all i, $H^i(X)$ has finite length as left E-module, where E is the endomorphism ring of X in the homotopy category of complexes.

A complex as before is called generic complex. In case A is a finite-dimensional algebra over an algebraically close field, we also consider the tame representation type in terms of generic complexes.