AARON LAUVE, UQAM, LaCIM, C.P. 8888, Succ. Centre-Ville, Montréal, H3C 3P8
On novel ways to invert a matrix
Given an $n \times n$ matrix M over a (not necessarily commutative) field F and a candidate inverse M^{\prime}, the n^{2} equations $M \cdot M^{\prime}=I$, if solvable, define an inverse for M in $\operatorname{End}_{F}\left(F^{n}\right)$. For us, it is a small wonder that
(i) the solution is unique, and
(ii) the solution is the same as one would reach in solving the n^{2} different equations $M^{\prime} \cdot M=I$.

We are led to the following question: from the $2 \cdot n^{2}$ equations mentioned above, which choices of n^{2} yield a unique solution M^{\prime} ? The case $n=2$ is already interesting, involving a (reducible) Coxeter group of order eight, a nice lemma of Cohn's on the roots of noncommutative polynomials,

