AARON LAUVE, UQAM, LaCIM, C.P. 8888, Succ. Centre-Ville, Montréal, H3C 3P8 *On novel ways to invert a matrix*

Given an $n \times n$ matrix M over a (not necessarily commutative) field F and a candidate inverse M', the n^2 equations $M \cdot M' = I$, if solvable, define an inverse for M in $\operatorname{End}_F(F^n)$. For us, it is a small wonder that

(i) the solution is unique, and

(ii) the solution is the same as one would reach in solving the n^2 different equations $M' \cdot M = I$.

We are led to the following question: from the $2 \cdot n^2$ equations mentioned above, which choices of n^2 yield a unique solution M'? The case n = 2 is already interesting, involving a (reducible) Coxeter group of order eight, a nice lemma of Cohn's on the roots of noncommutative polynomials,