In this talk I will address my work joint with D. Xuong and L. Yan. More precisely, given $p \in [1, \infty)$ and $\lambda \in (0, n)$, we discuss Morrey space $L^{p,\lambda}(\mathbb{R}^n)$ of all locally integrable complex-valued functions f on \mathbb{R}^n such that for every open Euclidean ball $B \subset \mathbb{R}^n$ with radius r_B there are numbers C = C(f) (depending on f) and c = c(f, B) (relying upon f and B) satisfying

$$r_B^{-\lambda} \int_B |f(x) - c|^p \, dx \le C$$

and derive old and new, two essentially different cases arising from either choosing $c = f_B = |B|^{-1} \int_B f(y) dy$ or replacing c by $P_{t_B}(x) = \int_{t_B} p_{t_B}(x, y) f(y) dy$ —where t_B is scaled to r_B and $p_t(\cdot, \cdot)$ is the kernel of the infinitesimal generator L (taking the Schroedinger operator as a special one) of an analytic semigroup $\{e^{-tL}\}_{t\geq 0}$ on $L^2(\mathbb{R}^n)$. Consequently, we are led to simultaneously characterize the old and new Morrey spaces, but also to show that for a suitable operator L, the new Morrey space is equivalent to the old one.

JIE XIAO, Memorial University, St. John's, NL, A1C 5S7 Old and New Morrey Spaces with Heat Kernel Bounds