MICHAEL LACEY, Geogia Tech
On the Small Ball Problem
We consider Haar functions in the unit cube in three dimensions, normalized in L^{∞}. The question at hand is a 'non-trivial' lower bound on the L^{∞} norm of the sum

$$
\sum_{|R|=2^{-n}} a_{R} h_{R}(x) .
$$

The key point of the sum is that is formed over rectangles of a fixed volume-this is the 'Hyperbolic' assumption. We prove that for some $\eta>0$, we have the estimate

$$
\left\|\sum_{|R|=2^{-n}} a_{R} h_{R}(x)\right\|_{\infty}>c n^{-1+\eta} 2^{-n} \sum_{|R|=2^{-n}}\left|a_{R}\right|
$$

($\eta=0$ is the 'trivial' estimate). In a prior result of J. Beck, a famous and famously difficult result, established a logarithmic gain over the trivial estimate. We simplify and extend Beck's argument to prove this result.
Joint work with Dmitry Bilyk.

