BOB PEGO, Carnegie Mellon Univ., Dept. Math. Sciences, Pittsburgh, PA 15213 *Scaling dynamics of coagulation equations with dust and gel*

We study limiting behavior of rescaled size distributions that evolve by Smoluchowski's rate equations for coagulation, with rate kernel K = 2, x + y or xy. We find that the dynamics naturally extend to probability distributions on the positive half-line with zero and infinity appended, representing populations of clusters of zero and infinite size. The "scaling attractor" (set of subsequential limits) is compact and has a Levy–Khintchine-type representation that linearizes the dynamics and allows one to establish several signatures of chaos. In particular, for any given solution trajectory, there is a dense family of initial distributions (with the same initial tail) that yield scaling trajectories shadowing the given one for all large time.