AARON LAUVE, UQAM, LaCIM, C.P. 8888, Succ. Centre-Ville, Montréal, H3C 3P8 *Noncommutative invariants and coinvariants of the symmetric group*

The algebras NCSym_n and Sym_n $(n \in \mathbb{N}_+)$ are defined to be the \mathfrak{S}_n -invariants inside $\mathbb{Q}\langle A_n \rangle$ (resp. $\mathbb{Q}[X_n]$), the polynomial functions on a noncommutative alphabet A_n (resp. commutative, X_n) of cardinality n. The abelianization $(a_i \mapsto x_i)$ realizes Sym_n as a quotient of NCSym_n . Here, we view it as a subspace. Some surprising identities on the ordinary generating function for the Bell numbers appear as an immediate corollary. In case $n = \infty$, we obtain new information on the (Hopf) algebraic structure of NCSym_n .

Time permitting, we outline similar results for Hivert's r-QSym_n algebras $(r, n \in \mathbb{N}_+ \cup \{\infty\})$ and their noncommutative analogues.

Joint work with F. Bergeron.