|
|
|
Finite Elements / Éléments finis (Org: Roger Pierre)
- FRANCOIS BERTRAND, Department of Chemical Engineering, École Polytechnique de
Montréal, Montreal, Quebec H4R 2V3
A local refinement based fictitious domain method for the
simulation of fluid flow in complex geometries
[PDF] -
The simulation of fluid flow in industrial processes often involves
geometries that may contain mobile internal parts. The use of classical
finite element (or finite volume) methods to tackle such problems is
far from trivial since a new mesh is needed at each time iteration
owing to the motion of these internal parts. The objective of this work
is to combine a fictitious domain method with a mesh refinement
technique that relies upon one single reference mesh. The method will
be discussed in detail and two-dimensional and three-dimensional
applications will be presented. In particular, it will be shown that
the proposed strategy is quite efficient for the simulation of fluid
flow in geometries with moving parts and small gaps.
- YVES BOURGAULT, Universite d'Ottawa, Ottawa, Ontario
A mortar element for coupling hyperbolic and parabolic problems
[PDF] -
The mortar element method is now very popular to decompose elliptic
problems on multiple sub-domains. The main feature of this method is
its ability to deal with nonmatching grids on sub-domain interfaces
without loosing any accuracy of the global solution, while allowing the
parallel computing of the solution. As far as we know, the mortar
method has been introduced for elliptic or parabolic PDEs only. Its
extension to hyperbolic problems (such as the Euler equations for
inviscid flows) or mixed-type equations (such as the Navier-Stokes
equations for compressible flows) would be a definite asset.
The present work is an initial step into the development of an
``all-at-once'' mortar methods that works for all type of equations,
first concentrating on its development for the linear advection
equation. The proposed mortar method works for hyperbolic equations,
through a combination of streamline-diffusion up-winding, discontinuous
and mortar finite element terms in the Galerkin formulation. A weak
flux continuity condition at the sub-domain interface is enforced by
means of Lagrange multipliers which yields a solution with optimal
accuracy even with non-matching grids at sub-domain interfaces. The
method can be consistently applied to the advection-diffusion
equation. The method has been implemented using MPI and numerical
results will be shown for the pure advection as well as the
advection-diffusion equations.
- ALAIN CHARBONNEAU, Université du Québec en Outaouais, Saint-Jean-Bosco,
Hull, Québec J8Y 3G5
Une méthode adaptative d'éléments finis permettant le
calcul des modes propres d'un guide d'ondes optiques
[PDF] -
Les guides d'ondes optiques (GOO) sont des composants fondamentaux
de certains dispositifs de transmission de données par ondes
lumineuses utilisés dans les secteurs des télécommunications et
du génie (instruments de mesure de paramètres physiques tels la
température, la pression, ...).
Dans cet exposé, nous nous intéressons au calcul des modes propres
des GOO qui présentent un axe longitudinal d'invariance. Puisque
nous cherchons aussi à modéliser la biréfringence de certains
types de GOO, nous sommes conduits à résoudre un problème aux
valeurs propres issu des équations de Maxwell, dans le cadre de
l'optique guidée, dites pleinement vectorielles.
C'est dans ce contexte que nous présentons une méthode adaptative
d'éléments finis qui permet de calculer de façon précise les
composantes des modes propres d'un champ électromagnétique se
propageant dans un GOO composé de matériaux diélectriques
isotropes ou anisotropes. Des applications de cette méthode de
calcul seront présentées.
- MICHEL DELFOUR, Centre de Recherches Mathématiques et Département de
Mathématiques et de Statistique, Université de Montréal
Approximation of the dose for thin coated stents
in interventional cardiology
[PDF] -
Stents are used in interventional cardiology to keep a diseased vessel
open. New stents are coated with a medicinal agent to prevent early
reclosure due to the proliferation of smooth muscle cells. It is the
dose of the agent which effectively acts on the cells in the wall of
the vessel. This paper gives mathematical models of the dose for a
periodic stent and an asymptotic stent. It studies the effect of the
number of struts and the ratio between the area of the coated struts
and the targeted area of the vessel. Theoretical and numerical results
are presented with emphasis on the critical choice of finite element
approximations for diffusion-transport equations in the presence of the
stent which behaves as a Neumann sieve at the interface between the
lumen and the wall of the vessel. (joint paper with A. Garon (Ecole
Polytechnique and Vito Longo (Université de Montreal)
- KOKOU DOSSOU, Département de mathématiques et de statistique,
Université Laval, Québec G1K 7P4
Higher order vector edge finite element analysis of optical
waveguides
[PDF] -
We will present some applications of vector edge finite element methods
to the analysis of optical fiber such as the computation of the
propagation constant and propagation mode and that of the
birefringence. To address the need for a more accurate finite element
approximation we develop a higher order vector edge finite element
model. It is well known that the use of standard nodal finite element
methods does not work well for electromagnetic problems. Although edge
elements appear to be reliable, some care must be taken in order to
avoid spurious modes. We will discuss some observations and
mathematical properties which ensure that the higher order vector
finite element converges and is free of spurious modes.
- ROSS ETHIER, University of Toronto, Toronto, Ontario M5S 3G8
Finite element modelling of coronary artery hemodynamics
[PDF] -
The coronary arteries are responsible for supplying blood to the heart
muscle and are a common site of arterial disease, which leads in its
end stages to heart attack. Development of arterial disease in these
arteries appears to be strongly influenced by biomechanical factors,
including blood flow (hemodynamic) features. To better understand the
disease process we therefore desire to model flow patterns in the
coronary arteries. The modelling challenges in these arteries include
very large deformations of the artery over the cardiac cycle, complex
3D geometries, and significant flow unsteadiness. Here we review some
of the techniques used to overcome these challenges. In brief,
coronary artery geometries are determined based on post-mortem casts
and movies of beating hearts (cineangiograms). Flow modelling uses the
Arbitrary Lagrangian-Eulerian (ALE) approach; mesh updating is based on
a spring analogy model modified to preserve element quality during
complex 3D motions. Flow unsteadiness is based on intra-operative
measurements of blood flow wave forms in the affected arteries. An
overview of our results will be given, demonstrating the primary
effects of arterial geometry (particularly complex, compound
curvature), with smaller effects due to flow pulsation and arterial
motion.
- ANDRÉ FORTIN, Université Laval, Québec G1K 7P4
Reconstruction géométrique, estimation d'erreur et remaillage
adaptatif: application à la mise en forme des polymères
[PDF] -
Dans cet exposé, nous présenterons brièvement les outils de
reconstruction géométrique, d'estimation d'erreurs et de remaillage
adaptatif développés au GIREF au cours des dernières années. La
reconstruction géométrique consiste, à partir uniquement d'un
maillage donné, à identifier les frontières et à recréer la
géométrie du problème de manière à être totalement
indépendant de quelque logiciel de CAD que ce soit. On peut ensuite
résoudre le problème par une méthode numérique quelconque et
estimer l'erreur commise. Le maillage est ensuite rafiné ou
dérafiné suivant l'importance de l'erreur estimée de maniére
à respecter la géométrie reconstruite au préalable.
Nous présenterons par la suite quelques applications à la mise ne
forme des polyméres: écoulement dans une contraction de rapport 18
à 1, écoulement dans des mélangeurs statiques, etc.
- ROBERT GUENETTE, Université Laval, Québec G1K 7P4
Méthodes de dualité convexe pour la résolution par
éléments finis de problèmes de contact en mécanique des
solides
[PDF] -
De nombreux problèmes industriels exigent de tenir compte du contact
mécanique et/ou thermique entre divers matériaux. Le présent
exposé est motivé par des applications dans le secteur de
l'aluminium et celui de la conception de moteurs d'avion. La
résolution de problèmes de contact pose des défis de taille pour
le numéricien. Ceci est principalement dû à la nature non
différentiable des lois de contact conduisant à des inéquations
variationnelles. De plus, les méthodes classiques de résolution du
contact ne sont pas efficaces pour les problèmes de grande taille
visés dans les applications.
On posera le problème dans le contexte général de l'élasticité
en grande déformation incluant le frottement mécanique entre les
différents corps élastiques. On utilisera les méthodes de
dualité convexe pour le traitement de la non différentiabilité
des lois de contact. On proposera une linéarisation des inéquations
non linéaires et une discrétisation par éléments finis. Pour
les problèmes de contact sans frottement, le système discret sera
résolu par un algorithme de gradient conjugué projeté appliqué
au problème dual. Des résultats numériques seront présentés
pour le calcul approché des déplacements de deux corps élastiques
discrétisés par des maillages incompatibles à l'interface de
contact.
- DANIEL LEROUX, Université Laval, Québec G1K 7P4
An appropriate finite-element pair to simulate inertia-gravity waves
[PDF] -
Most of atmospheric, oceanic and hydrological models typically employ
gridpoint, finite and spectral-element techniques. For all these
numerical methods the coupling between the momentum and continuity
equations usually leads to spurious solutions in the representation of
inertia-gravity waves. The spurius modes have a wide range of
characteristics and may take the form of pure inertia oscillations,
Coriolis modes and pressure modes. The spurius modes are small-scale
artifacts which are trapped within the model grid, and can cause
aliasing and an accumulation of energy in the smallest-resolvable
scale, leading to noisy solutions. Their appearance is mainly due to
an inappropriate placement of variables on the grid and/or a bad choice
of approximation function spaces. We present a triangular
finite-element pair candidate, which `properly' models the dispersion
of the inertia-gravity waves. In particular, the discrete frequency
increases monotonically with wavenumbers as in the continuum case,
contrarily to most of other finite-element pairs (if not all). It will
also be shown that, like for most other pairs, this finite element
candidate should be employed when a precise calculation of the Rossby
modes is not an issue. Results of test problems to simulate the
propagation of inertia-gravity waves with the proposed finite-element
pair are presented and they are compared with results of other grids.
They illustrate the promise of the proposed approach.
- P.D. MINEV, Department of Mathematics, Statistics and Sciences, University of
Alberta, Edmonton, Alberta
Analysis of a projection/characteristic scheme
for incompressible flow
[PDF] -
The paper presents the convergence analysis of a
characteristic/projection scheme for the incompressible Navier-Stokes
equations. This scheme is a modification of the scheme analyzed in
[1] which does not eliminate the projected velocity field from the
system but rather uses it as the advecting field in the explicit
characteristic advection. This field has a zero (generalized)
divergence and is therefore more suitable for this purpose. It appears
that this scheme has the same convergence rate as the one in [1]
but on a given grid seems to produce more accurate results. The
computational cost is not significantly higher since it requires only
one extra inversion of the mass matrix which can be done relatively
efficiently. We present numerical results which illustrate the
properties of the scheme.
References
- [1]
- Y. Achdou and J.-L. Guermond,
Convergence analysis of a finite element projection/Lagrange-Galerkin
method for the incompressible Navier-Stokes equations.
SIAM J. Numer. Anal. (3) 37(2000), 799-826.
- DOMINIQUE PELLETIER, École Polytechnique de Montréal, Montréal, Ontario
Sensitivity and uncertainty analysis in CFD
[PDF] -
In this talk we present the sensitivity equation method (SEM) to
perform sensitivity and uncertainty analysis of CFD model. A
formulation of teh SEM is presented that unifies both value and shape
parameters. The SEM is used to cascade uncertainty in the input through
a CFD code to obtain uncertainty estimates on the outputs of the CFD
simulation. Examples will be presented for flows with strongly
temperature dependent properties. Application to turbulent flows will
also be discussed.
- BRUCE SIMPSON, School of Computer Science, University of Waterloo, Waterloo,
Ontario N2L 3G1
Computing the deltas; efficiency-accuracy trade offs
in solving Black Scholes equations
[PDF] -
Pricing functions for financial options are routinely computed as
numerical solutions of partial differential equations of Black Scholes
type. The risk associated with issuing an option can be reduced by
various hedging strategies for portfolio management. In theory, a
zero-risk strategy is possible, which requires continuously modifying
the portfolio. These modifications depend on the derivatives of the
dynamically changing price function, i.e. the so-called delta
hedging parameters. In practice, the ideal hedging strategy may be
approximately followed which results in the issuer incurring some
risk.
We will look at finite element computation of pricing functions
V(S1,S2,t) that depend on two underlying assets, and estimation of
the the gradient from the numerical solution for hedging parameters.
The goal is to determine
a) a level of accuracy that incurs an acceptable risk
b) techniques of meshing and gradient estimation which
can efficiently meet the accuracy requirement of a).
- LEILA SLIMANE, GIREF, Laval
Méthodes mixtes pour la résolution des inéquations
variationnelles
[PDF] -
La méthode des éléments finis mixtes permet de remedier de
façon efficace aux phénomènes de verrouillage numérique
pouvant apparaître dans la résolution numérique d'équations
variationnelles dépendant d'un petit paramètre. Dans le présent
exposé nous étendons le champ d'application de cette méthode
aux inéquations variationnelles, tout particulièrement au
problème de transmission raide avec des conditions aux limites de
type Signorini, et au problème de contact unilatéral en
élasticité presque incompressible.
Nous commençons par dégager les propriétés communes aux
formulations mixtes de ces derniers problèmes. Ensuite, nous nous
plaçons dans un cadre abstrait, regroupant les propriétés des
exemples précédents, et dans lequel nous établissons des
résultats d'existence, d'unicité et de stabilité. Nous donnons
aussi des résultats de convergence et des estimations d'erreur dans
le cadre d'approximation du problème. Finalement, nous appliquons
cette étude à l'approximen élasticité presque incompressible,
où nous obtenons des résultats de convergence uniforme pour ces
schémas.
- AZZEDINE SOULAIMANI, École de technologie supérieure
On the solution of free surface flows with the SPH
and related methods
[PDF] -
SPH (Smoothed Particle Hydrodynamics) is a Lagrangian mesh free
method used since the end of the seventeen in the simulation of
astrophysics problems. Monaghan proposed extensions to gas dynamics
and free surface problems. Original SPH regain more popularity in
the nineties, especially for impact and large deformation mechanical
problems. In the first part of the talk, a state of the art on SPH
will be given. A relationship between SPH and the finite
element-finite volume method will be emphasized with application to the
solution of the Shallow-water equations. This formulation gives the
possibility to introduce well-known finite elements or finite volume
stabilization techniques for high speed flows. The problem of dam
break in various two-dimensional configurations is used as the
benchmark test. The result obtained depends on the concerned problem.
For the cases of standard and circular dams, the results are quiet
encouraging. The capture of shocks and the shape of the waves were
successfully revealed. The success of the SPH in the solution of
free surface flows depends on the optimisation of its parameters, a
smart choice of particles number, type of the kernel and the smoothing
of irregularities in the geometry. In case of irregular boundaries,
some difficulties are encountered for imposing proper boundary
conditions, and require additional investigations.
|
|