Fix a finite-dimensional simple Lie algebra \mathfrak{g} and let $\mathfrak{g}_J \subseteq \mathfrak{g}$ be a Lie subalgebra coming from a Dynkin diagram inclusion. Then, the corresponding restriction functor is not essentially surjective on finite-dimensional simple \mathfrak{g}_J -modules. In this talk, we will study Finkelberg-Tsymbaliuk's shifted quantum affine algebras $U_q^{\mu}(\mathfrak{g})$ and the associated categories \mathcal{O}^{μ} (defined by Hernandez). In particular, we will introduce natural subalgebras $U_q^{\nu}(\mathfrak{g}_J) \subseteq U_q^{\mu}(\mathfrak{g})$ and obtain a functor \mathcal{R}_J from $\mathcal{O}^{sh} = \bigoplus_{\mu} \mathcal{O}^{\mu}$ to $\bigoplus_{\nu} (U_q^{\nu}(\mathfrak{g}_J)$ -Mod) using the canonical restriction functors. We will then establish that \mathcal{R}_J is essentially surjective on finite-dimensional simple objects by constructing notable preimages (called *inflations*) and will use these preimages to deduce certain *R*-matrices and examples of *cluster structures over Grothendieck rings*.

THÉO PINET, Université Paris Cité and Université de Montréal *Inflations for representations of shifted quantum affine algebras*