EMILY CLIFF, Université de Sherbrooke *Quasi-universal sheaves and generic bricks*

This is based on joint work with Colin Ingalls and Charles Paquette. For a quiver $Q=(Q_0,Q_1)$ and dimension vector $d=(d_i)_{i\in Q_0}$ we study a coarse moduli M space of quiver representations. Let d be the greatest common divisor of the numbers d_i . In the case that d=1, it is known that M admits a universal family U of representations, and hence is a fine moduli space: that is, U is a sheaf of kQ-modules on M such that for every point $m\in M$ corresponding to a kQ-module V_m , the fibre U_m of U at m is isomorphic to the representation V_m . However, this fails when d>1 (Reineke–Schröer, Hoskins–Schaffhauser); instead M admits a quasi-universal family \tilde{U} whose fibre \tilde{U}_m is isomorphic to a direct sum of copies of the representation V_m . In this talk, I will introduce the notion of twisted sheaves and sketch the construction of the sheaf \tilde{U} . I will explain how we can use the quasi-universal sheaf \tilde{U} to construct generic bricks for the path algebra kQ.