PAUL PÉRINGUEY, University of British Columbia
Refinements of Artin's primitive root conjecture
Let $\operatorname{ord}_{\mathrm{p}}(\mathrm{a})$ be the order of a in $(\mathbb{Z} / p \mathbb{Z})^{*}$. In 1927 Artin conjectured that the set of primes p for which an integer $a \neq-1$, \square is a primitive root (i.e. $\operatorname{ord}_{\mathrm{p}}(\mathrm{a})=\mathrm{p}-1$) has a positive asymptotic density among all primes. In 1967 Hooley proved this conjecture assuming the Generalized Riemann Hypothesis.
In this talk we will study the behaviour of $\operatorname{ord}_{\mathrm{p}}(\mathrm{a})$ as p varies over primes, in particular we will show, under GRH, that the set of primes p for which $\operatorname{ord}_{\mathrm{p}}(\mathrm{a})$ is " k prime factors away" from $p-1$ has a positive asymptotic density among all primes except for particular values of a and k. We will interpret being " k prime factors away" in three different ways, namely $k=\omega\left(\frac{p-1}{\operatorname{ord}_{\mathrm{p}}(\mathrm{a})}\right)$, $k=\Omega\left(\frac{p-1}{\operatorname{ord}_{\mathrm{p}}(\mathrm{a})}\right)$ and $k=\omega(p-1)-\omega\left(\operatorname{ord}_{\mathrm{p}}(\mathrm{a})\right)$, and present conditional results analogous to Hooley's in all three cases and for all integer k.
This is joint work with Leo Goldmakher and Greg Martin.

