PAUL PÉRINGUEY, University of British Columbia *Refinements of Artin's primitive root conjecture*

Let $\operatorname{ord}_p(a)$ be the order of a in $(\mathbb{Z}/p\mathbb{Z})^*$. In 1927 Artin conjectured that the set of primes p for which an integer $a \neq -1, \square$ is a primitive root (i.e. $\operatorname{ord}_p(a) = p - 1$) has a positive asymptotic density among all primes. In 1967 Hooley proved this conjecture assuming the Generalized Riemann Hypothesis.

In this talk we will study the behaviour of $\operatorname{ord}_p(a)$ as p varies over primes, in particular we will show, under GRH, that the set of primes p for which $\operatorname{ord}_p(a)$ is "k prime factors away" from p-1 has a positive asymptotic density among all primes except for particular values of a and k. We will interpret being "k prime factors away" in three different ways, namely $k = \omega(\frac{p-1}{\operatorname{ord}_p(a)})$, $k = \Omega(\frac{p-1}{\operatorname{ord}_p(a)})$ and $k = \omega(p-1) - \omega(\operatorname{ord}_p(a))$, and present conditional results analogous to Hooley's in all three cases and for all integer k.

This is joint work with Leo Goldmakher and Greg Martin.