GREG KNAPP, University of Calgary
Exponential Relations Among Algebraic Integer Conjugates
Products of the form $\alpha_{1}^{c_{1}} \cdots \alpha_{n}^{c_{n}}$ where the α_{i} are algebraic are of interest across much of number theory, especially since Baker's results on linear forms in logarithms are widely applicable. In this talk, we explore the scenario where $\alpha_{1}, \ldots, \alpha_{n}$ consist only of algebraic integer conjugates, though the α_{i} need not comprise a full set of algebraic integer conjugates. In particular, for some integers $d \geq 2$ and $1 \leq k \leq d-1$ we describe the set $E_{k, d}$ of all tuples $\left(c_{2}, \ldots, c_{k+1}\right) \in\left(\mathbb{R}_{\geq 0}\right)^{k}$ for which $\left|\alpha_{1}\right|\left|\alpha_{2}\right|^{c_{2}} \cdots\left|\alpha_{k+1}\right|^{c_{k+1}} \geq 1$ for every tuple of degree d algebraic integer conjugates $\alpha_{1}, \ldots, \alpha_{d}$ which are written in descending order of absolute value. Furthermore, for any fixed tuple $\left(c_{2}, \ldots, c_{k+1}\right) \in E_{k, d}$, we ask whether or not there exists a tuple of degree d algebraic integer conjugates $\alpha_{1}, \ldots, \alpha_{d}$ (written in descending order of absolute value) so that $\left|\alpha_{1}\right|\left|\alpha_{2}\right|^{c_{2}} \cdots\left|\alpha_{k+1}\right|^{c_{k+1}}=1$. If there does not exist such a tuple, we ask if we can find lower bounds on the quantity $\left|\alpha_{1}\right|\left|\alpha_{2}\right|^{c_{2}} \cdots\left|\alpha_{k+1}\right|^{c_{k+1}}-1$. This talk features joint work with Seda Albayrak, Samprit Ghosh, and Khoa Nguyen.

