LORD KAVI, University of Ottawa
Optimal Polynomials for the k-independence Number of Graphs
A k-independent set in a graph is a set of vertices such that any two vertices in the set are at distance at least $k+1$ in the graph. The k-independence number of a graph, denoted α_{k}, is the size of a largest k-independent set in the graph. Abiad et al gave a generalization of the Hoffman ratio bound on α_{k}, which involves taking polynomials of degree at most k. A good bound therefore depends on making the right choice of a polynomial. In this talk, we highlight the known optimal polynomials for $k=1,2,3$ and their corresponding bounds on α_{k}, and give a possible generalization of these polynomials.

