AVLEEN KAUR, The University of British Columbia
Estimating the minimum positive eigenvalue of PSD matrices
An extensive body of literature addresses the estimation of eigenvalues of the sum of two symmetric matrices, $P+Q$, in relation to the eigenvalues of P and Q. Recently, we introduced two novel lower bounds on the minimum eigenvalue, $\lambda_{\min }(P+Q)$, under the conditions that matrices P and Q are symmetric positive semi-definite (PSD) and their sum $P+Q$ is non-singular. These bounds rely on the Friedrichs angle between the range spaces of matrices P and Q, which are denoted by $\mathcal{R}(P)$ and $\mathcal{R}(Q)$, respectively. In addition, both results led to the derivation of several new lower bounds on the minimum singular value of full-rank matrices. We extend these insights to estimate the minimum positive eigenvalue of $P+Q, \lambda_{\min }(P+Q)$, even if $P+Q$ is singular, in terms of the minimum positive eigenvalues of P and Q, namely $\lambda_{\min }(P)$ and $\lambda_{\min }(Q)$. Our approach leverages angles between specific subspaces of $\mathcal{R}(P)$ and $\mathcal{R}(Q)$, meticulously chosen to yield a positive lower bound. Additionally, we illustrate these concepts through relevant examples.

