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In 1982, Yau conjectured that every Riemannian 3-manifold has an infinite number of closed immersed minimal surfaces.
Successive works of Marques, Neves, Irie, Liokumovich and Song led to the solution of the conjecture in 2018 using Almgren-
Pitts minmax theory. The latter is a Morse Theory for the area functional in the space of currents, which are non-smooth
generalizations of embedded submanifolds. In the talk, we will focus on studying a 1-dimensional version of Yau’s conjecture.
In dimension 1, Almgren-Pitts theory produces stationary geodesic nets, which are generalizations of closed geodesics whose
domain is a graph Γ instead of S1. We will discuss two main results about a closed manifold Mn, n ≥ 2. The first one is that
for a generic set of Riemannian metrics on M , the union of all stationary geodesic nets is dense in M . The second one is that
for n = 2 and n = 3 the following equidistribution result holds: for a generic set of metrics g on M , there exists a countable
collection of connected and embedded stationary geodesic nets {γi}i∈N such that
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for every smooth function f : M → R. These results were obtained in collaboration with Yevgeny Liokumovich and Xinze Li
respectively.
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