SCOTT RODNEY, Cape Breton University

Limits of Orlicz Norms

Given a subset Ω of \mathbb{R}^n and a 1-parameter family of Young functions $\{\Psi_j\}_j$, we are interested in when it is the case that

(1)
$$\lim_{j \to \infty} \|f\|_{L^{\Psi_j}(\Omega)} = \|f\|_{L^{\infty}(\Omega)}$$
(1)

for a suitable $f \in L^1$. In this talk, I present joint work with A. Mailhot where we show the above equality for families of iterated log-bump Young functions of the form

$$\Psi_j(t) = t^p \left(\prod_{k=1}^{n-1} \log^{(k)}(e_k - 1 + t)\right)^p \left(\log^{(n)}(e_n - 1 + t)\right)^p$$

where $1 \le p < \infty$ is fixed and j > 0. More generally, in joint work with S.F. MacDonald, we give a sharp admissibility criterion for the Young functions Ψ_j that ensures (1) holds.