MOHAMMAD SHIRAZI, McGill University

Prescribing the radial limits of solutions to a PDE

Let S^{n-1} be the unit sphere in \mathbb{R}^n , and (θ, r) be the polar representation of points in \mathbb{R}^n , for $\theta \in S^{n-1}$, and $r \ge 0$. Moreover, let us call *L*-harmonic functions the solutions of the PDE Lu = 0.

Now, let suppose U = (U', R) is a strictly starlike domain in \mathbb{R}^n , $n \ge 2$, and let F' be an F_{σ} subset of U', which is of first category if n = 2, and polar if n > 2. Then, we shall introduce a class of partial differential operators L such that for every function φ continuous on U, there is a L-harmonic function h on U such that, for all $\theta \in F'$, we have

$$(h - \varphi)((\theta, r)) \to 0$$

as (θ, r) goes to the boundary of U. That is, the radial limits of h can be prescribed by a continuous function. ***This is a joint work with Paul. M. Gauthier.***