KENNEDY OBINNA IDU, Fields Institute

Boundedness of β -numbers and $C^{1,\alpha}$ -rectifiability of sets in \mathbb{R}^n

The β -numbers were introduced by P. Jones on the travelling salesman problem and used to control the Cauchy singular integral on one-dimensional Lipschitz graphs. G. David and S. Semmes extended this to characterizing those *m*-dimensional subsets of \mathbb{R}^n , 0 < m < n, on which we have L^2 -boundedness of certain singular integral operators. This is a way of quantifying the notion of rectifiability – describing how much of a set can be covered almost everywhere with countably many Lipschitz graphs or C^1 -submanifolds. In this talk we show how this quantity encodes higher order regularity data for sets in \mathbb{R}^n . In particular, we show that an almost everywhere local boundedness assumption on the β -numbers suffices for $C^{1,\alpha}$ -rectifiability, $0 < \alpha < 1$, of subsets of \mathbb{R}^n . This is in a joint work with Giacomo Del Nin (Warwick).