SHONDA DUECK, University of Winnipeg
The threshold strong dimension of a graph
A set W of vertices of a connected graph G is a strong resolving set for G if, for every pair of vertices, one of the vertices in the pair lies on a shortest path from the other vertex to some vertex of W. The smallest cardinality of a strong resolving set of vertices of G is the strong dimension of G. The threshold strong dimension of G is the smallest strong dimension among all graphs having G as a spanning subgraph, and it is denoted by $\tau_{s}(G)$. We present a geometric characterization of $\tau_{s}(G)$, which expresses $\tau_{s}(G)$ in terms of the smallest number of paths (each of sufficiently large order) whose strong product admits a certain type of embedding of G. We also establish logarithmic bounds on $\tau_{s}(G)$ for graphs in general, and for trees. This is joint work with Nadia Benakli, Novi H. Bong, Linda Eroh, Beth Novick, and Ortrud Oellermann.

