## ALEXANDER KOLPAKOV, Université de Neuchâtel

Space vectors forming rational angles

We classify all sets of nonzero vectors in  $\mathbb{R}^3$  such that the angle formed by each pair is a rational multiple of  $\pi$ . The special case of four-element subsets lets us classify all tetrahedra whose dihedral angles are multiples of  $\pi$ , solving a 1976 problem of Conway and Jones: there are 2 one-parameter families and 59 sporadic tetrahedra, all but three of which are related to either the icosidodecahedron or the  $B_3$  root lattice. The proof requires the solution in roots of unity of a  $W(D_6)$ -symmetric polynomial equation with 105 monomials (the previous record was 12 monomials only). This is a joint work with Kiran S. Kedlaya (UCSD), Bjorn Poonen (MIT), and Michael Rubinstein (University of Waterloo).