ANTON MOSUNOV, University of Waterloo

On the representation of integers by binary forms defined by means of the relation $(x+y i)^{n}=R_{n}(x, y)+J_{n}(x, y) i$
Let F be a binary form with integer coefficients, degree $d \geq 3$ and non-zero discriminant. Let $R_{F}(Z)$ denote the number of integers of absolute value at most Z which are represented by F. In 2019 Stewart and Xiao proved that $R_{F}(Z) \sim C_{F} Z^{2 / d}$ for some positive number C_{F}. We compute $C_{R_{n}}$ and $C_{J_{n}}$ for the binary forms $R_{n}(x, y)$ and $J_{n}(x, y)$ defined by means of the relation

$$
(x+y i)^{n}=R_{n}(x, y)+J_{n}(x, y) i
$$

where the variables x and y are real.

