CRISTIAN ENACHE, American University of Sharjah

On some monotonicity properties of the p-torsional rigidity
For a bounded domain $\Omega \subset \mathbb{R}^{N}, N \geq 2$ and a real number $p>1$, we denote by u_{p} the p-torsion function on Ω, that is the solution of the torsional creep problem $\Delta_{p} u=-1$ in $\Omega, u=0$ on $\partial \Omega$, where $\Delta_{p}:=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$ is the p-Laplace operator. In this talk we are going to present some monotonicity properties for the p-torsional rigidity on Ω, defined as $T_{p}(\Omega):=\int_{\Omega} u_{p} d x$, and for $p \rightarrow T(p ; \Omega):=|\Omega|^{p-1} T_{p}(\Omega)^{1-p}$.

