PETER KRISTEL, University of Manitoba *Connes fusion of the free fermions on the circle*

A conformal net on S^1 is an assignment \mathcal{A} : {open subsets of S^1 } \rightarrow {von Neumann algebras acting on \mathcal{F} }, which satisfies a slew of axioms motivated by quantum field theory. In this talk, I will consider the free fermionic conformal net. In this case, the Hilbert space \mathcal{F} is the Fock space generated by the positive energy modes of square-integrable spinors on the circle $L^2(S^1, \mathbb{S})$; and the von Neumann algebras are Clifford algebras generated by those elements of $L^2(S^1, \mathbb{S})$ whose support lies in $I \subset S^1$. After going over this construction, I will argue that given an open interval $I \subset S^1$, one can equip \mathcal{F} with the structure of $\mathcal{A}(I)$ - $\mathcal{A}(I)$ -bimodule. I will then outline the construction of a canonical isomorphism of bimodules $\mathcal{F} \boxtimes_{\mathcal{A}(I_-)} \mathcal{F} \to \mathcal{F}$, where $\boxtimes_{\mathcal{A}(I_-)}$ stands for the Connes fusion product over the algebra assigned to the lower semi-circle I_- . If time permits, I will discuss some (anticipated) applications of this isomorphism, for example in string geometry, or in the construction of the free fermion *extended* topological field theory.