DMITRY RYABOGIN, Kent State University

On the chord property for the pair of convex bodies
Let K be a convex body in $\mathbb{R}^{d}, d \geq 3$, and let K_{δ} be its floating body for some fixed $\delta \in\left(0, \frac{\operatorname{vol}_{d}(K)}{2}\right)$. Assume that for all sections $K \cap H$ that are tangent to K_{δ}, the length of all the chords $g \subset K \cap H$ passing through the centers of mass of all $K \cap H$ is the same. Does it follow that K and K_{δ} are concentric Euclidean balls? We show that the answer is affirmative for bodies of revolution.

