HUSSEIN MESMAR, lorraine university IECL

Solution for Hardy-Sobolev equation in presence of isometrie

Let (M;g) be a smooth compact Riemannian manifold of dimension $n \ge 4$, G a closed subgroup of the group of isometries $Isom_g(M)$ of (M,g) and $k = \min_{x \in M} dimGx$, where Gx denotes the orbit of a point $x \in M$ under G. We fixe a point $x_0 \in M$ that $dimGx_0 = k$ and $s \in (0;2)$. We say that a function $\phi: M \to \mathbb{R}$ is G-invariant if $\phi(gx) = \phi(x)$ for any $x \in M$ and $g \in G$. We investigate a sufficient condition for the existence of a distributional continuous positive G-invariant solution for the Hardy-Sobolev equation

$$\Delta_g u + au = \frac{u^{2^*(k,s)-1}}{d_g(x, Gx_0)^s} + hu^{q-1}$$
(E)

where $\Delta_g := -div_g(\nabla)$ is the Laplace-Beltrami operator, $a, h \in C^0(M), h \ge 0, d_g$ is the Riemannian distance on (M;g), $2^*(k,s) = \frac{2(n-k-s)}{n-k-2}$ and $q \in (2, 2^*(k,s))$ with $2^* = 2^*(0,0)$. We prove that the existence of a Mountain Pass solution for the above perturbative equation depends only on the perturbation. For that we need to prove first that for any $\epsilon > 0$, exist A > 0 and $B_{\epsilon} = B(\epsilon) \ge 0$ so that for any $u \in L^{2^*(k,s)}(M, d_g(x, Gx_0)^{-s})$

$$||u||_{L^{2^*(k,s)}(M,d_q(x,Gx_0)^{-s})}^2 \le (A+\epsilon)||\nabla u||_2^2 + B_\epsilon ||u||_2^2$$