FRÉDÉRIC ROBERT, Université de Lorraine

Blowing-up solutions for second-order critical elliptic equations: the impact of the scalar curvature

Given a closed manifold (M^n, g) , $n \ge 3$, Olivier Druet proved that a necessary condition for the existence of energy-bounded blowing-up solutions to perturbations of the equation

$$\Delta_{q}u + h_{0}u = u^{\frac{n+2}{n-2}}, \ u > 0 \text{ in } M$$

is that $h_0 \in C^1(M)$ touches the Scalar curvature somewhere when $n \ge 4$ (the condition is different for n = 6). In this paper, we prove that Druet's condition is also sufficient provided we add its natural differentiable version. For $n \ge 6$, our arguments are local. For the low dimensions $n \in \{4, 5\}$, our proof requires the introduction of a suitable mass that is defined only where Druet's condition holds. This mass carries global information both on h_0 and (M, g).