JEANETTE JANSSEN, Dalhousie University
Reconstructing the linear order of a locally connected random graph
Consider the following random graph process. Vertices are sampled from the interval $[0,1]$. Pairs of vertices are then connected (conditionally) independently with probability depending on their distance. Precisely, there is a decreasing function $f:[0,1] \rightarrow$ $[0,1]$, the probability link function, and for a pair of vertices $x, y \in[0,1]$, the connection probability is $f(|x-y|)$. Since vertices are embedded in the line segment, they have a natural ordering. Vertices that are closer to each other in the order are more likely to be connected; thus most connections are local.
The problem we consider is that of retrieving this order from the sampled graph; this may be referred to as graph seriation. We present a randomized graph seriation algorithm that, for a large class of probability functions, yields an ordering with error $O^{*}(\sqrt{n})$ with high probability; we also show that this is the best-possible convergence rate for a large class of algorithms and proof strategies. Under an additional assumption on the probability function, we obtain the vastly better rate $O^{*}\left(n^{\epsilon}\right)$ for any $\epsilon>0$.
This is joint work with Aaron Smith.

