BOJAN MOHAR, Simon Fraser University
Many flows in the group connectivity setting
Two well-known results in the world of nowhere-zero flows are Jaeger's 4-flow theorem asserting that every 4-edge-connected graph has a nowhere-zero $Z_{2} \times Z_{2}$-flow and Seymour's 6 -flow theorem asserting that every 2 -edge-connected graph has a nowhere-zero Z_{6}-flow. These results were extended by Dvorak et al., proving the existence of exponentially many nowhere-zero flows under the same assumptions. We revisit this setting and provide extensions and simpler proofs of these results.
The concept of a nowhere-zero flow was extended in a significant paper of Jaeger, Linial, Payan, and Tarsi to a choosability-type setting. For a fixed abelian group Γ, an oriented graph $G=(V, E)$ is called Γ-connected if for every function $f: E \rightarrow \Gamma$ there is a flow $\phi: E \rightarrow \Gamma$ with $\phi(e) \neq f(e)$ for every $e \in E$ (note that taking $f=0$ forces ϕ to be nowhere-zero). Jaeger et al. proved that every oriented 3 -edge-connected graph is Γ-connected whenever $|\Gamma| \geq 6$. We prove that there are exponentially many solutions whenever $|\Gamma| \geq 8$. For the group Z_{6} we prove that for every oriented 3-edge-connected $G=(V, E)$ with $\ell=|E|-|V| \geq 11$ and every $f: E \rightarrow Z_{6}$, there are at least $2^{\sqrt{\ell} / \log \ell}$ flows ϕ with $\phi(e) \neq f(e)$ for every $e \in E$.
This is joint work with Matt DeVos, Rikke Langhede, and Robert Samal.

