BOJAN MOHAR, Simon Fraser University

Many flows in the group connectivity setting

Two well-known results in the world of nowhere-zero flows are Jaeger's 4-flow theorem asserting that every 4-edge-connected graph has a nowhere-zero $Z_2 \times Z_2$ -flow and Seymour's 6-flow theorem asserting that every 2-edge-connected graph has a nowhere-zero Z_6 -flow. These results were extended by Dvorak et al., proving the existence of exponentially many nowhere-zero flows under the same assumptions. We revisit this setting and provide extensions and simpler proofs of these results.

The concept of a nowhere-zero flow was extended in a significant paper of Jaeger, Linial, Payan, and Tarsi to a choosability-type setting. For a fixed abelian group Γ , an oriented graph G = (V, E) is called Γ -connected if for every function $f : E \to \Gamma$ there is a flow $\phi : E \to \Gamma$ with $\phi(e) \neq f(e)$ for every $e \in E$ (note that taking f = 0 forces ϕ to be nowhere-zero). Jaeger et al. proved that every oriented 3-edge-connected graph is Γ -connected whenever $|\Gamma| \ge 6$. We prove that there are exponentially many solutions whenever $|\Gamma| \ge 8$. For the group Z_6 we prove that for every oriented 3-edge-connected G = (V, E) with $\ell = |E| - |V| \ge 11$ and every $f : E \to Z_6$, there are at least $2^{\sqrt{\ell}/\log \ell}$ flows ϕ with $\phi(e) \neq f(e)$ for every $e \in E$.

This is joint work with Matt DeVos, Rikke Langhede, and Robert Samal.