J. MICHAEL WILSON, University of Vermont

Perturbation of dyadic averages

If $f : \mathbf{R}^d \to \mathbf{C}$ is locally integrable and $E \subset \mathbf{R}^d$ is bounded and measurable, with positive Lebesgue measure |E|, then f_E means f's average over E: $f_E := \frac{1}{|E|} \int_E f \, dt$. \mathcal{D} denotes the family of dyadic cubes in \mathbf{R}^d . By the Lebesgue Differentiation Theorem, for a.e. $x \in \mathbf{R}^d$, $f_Q \to f(x)$ as $|Q| \to 0$, for $Q \in \mathcal{D}$ such that $x \in Q$. Suppose that, for some fixed $0 < \eta \ll 1$, and for every $Q \in \mathcal{D}$, we have an $n \times n$ real matrix $A^{(Q)}$ and a vector $y^{(Q)} \in \mathbf{R}^d$ such that: a) $||I_d - A^{(Q)}||_{\infty} < \eta$, where I_d is the identity matrix and $|| \cdot ||_{\infty}$ is the standard matrix norm; b) $|y^{(Q)}| \leq \eta$. For each $Q \in \mathcal{D}$ define

$$F^{(Q)}(x) := \chi_Q \left(A^{(Q)}(x - x_Q + \ell(Q)y^{(Q)}) + x_Q \right)$$

=: $\chi_{Q^*}(x),$

where x_Q is Q's center. We think of Q^* as a perturbation of Q resulting from a close-to-the-identity affine transformation "centered" on x_Q . The averages f_{Q^*} converge to a.e. x as $|Q| \to 0$ for $x \in Q \in \mathcal{D}$.

Elementary estimates with the Hardy-Littlewood maximal function show that, for all s > 2, there are constants c(d) > 0 and C(d, s) so that if $\eta < c(d)$ then, for all $f \in L^2(\mathbf{R}^d)$,

$$\left\| \sup_{x \in Q \in \mathcal{D}} |f_Q - f_{Q^*}| \right\|_2 \le C(d, s) \eta^{1/s} ||f||_2.$$

We improve this to get: There are constants c(d) > 0 and C(d) so that if $\eta < c(d)$ then, for all $f \in L^2(\mathbf{R}^d)$,

$$\left(\sum_{x \in Q \in \mathcal{D}} |f_Q - f_{Q^*}|^2\right)^{1/2} \bigg\|_2 \le C(d)\eta^{1/2} ||f||_2.$$