PETER DANZIGER, Ryerson universtiy
The Mini-Symposium Problem
Joint work with E. Mendelsohn, B. Stevens, T. Traetta.
The Oberwolfach problem was originally stated as a seating problem:
Given v attendees at a conference with t circular tables each of which seats a_{i} people $\left(\sum_{i=1}^{t} a_{i}=v\right)$. Find a seating arrangement so that every person sits next to each other person around a table exactly once over the r days of the conference. The Oberwolfach problem thus asks for a decomposition of K_{v} ($K_{v}-I$ when v is even) into 2-factors consisting of cycles with lengths a_{1}, \ldots, a_{t}.
In this talk we introduce the related mini-symposium problem, which asks for solutions to the Oberwolfach problem on v points which contains a subsystem on m points. In the seating context above, the larger conference contains a mini-symposium of m participants, and we also require these m participants to be seated together for $\left\lfloor\frac{m-1}{2}\right\rfloor$ of the days.
We obtain a complete solution when the cycle sizes are as large as possible, m and $v-m$. In addition, we provide extensive results in the case where all cycle lengths are equal, of size k say, completely solving all cases when $m \mid v$, except possibly when k is odd and v is even. In particular, we completely solve the case when all cycles are of length $m(k=m)$.

