NICK CAVENAGH, University of Waikato
Heffter arrays and biembeddings of cycle systems
In the last 20 years biembedding pairs of designs and cycle systems onto surfaces has been a muchresearched topic (see the 2007 survey "Designs and Topology" by Grannell and Griggs). In particular, in a posthumous work (2015), Archdeacon showed that biembeddings of cycle systems may be obtained via Heffter arrays. Formally, a Heffter array $H(m, n ; s, t)$ is an $m \times n$ array of integers such that: (a) each row contains $s$ filled cells and each column contains $t$ filled cells; (b) the elements in every row and column sum to 0 in $\mathbb{Z}_{2 m s+1}$; and (c) for each integer $1 \leq x \leq m s$, either $x$ or $-x$ appears in the array. If we can order the entries of each row and column satisyfing two properties (compatible and simple), a Heffter array yields an embedding of two cycle decompositions of the complete graph $K_{2 m s+1}$ onto an orientable surface. Such an embedding is face 2-colourable, where the faces of one colour give a decomposition into $s$-cycles and the faces of the other colour gives a decomposition into $t$-cycles. Thus as a corollary the two graph decompositions are orthogonal; that is, any two cycles share at most one edge. Moreover, the action of addition in $\mathbb{Z}_{2 m s+1}$ gives an automorphism of the embedding. We give more detail about the above and present a new result: the existence of Heffter arrays $H(n, n ; s, s)$ with compatible and simple orderings whenever $s \equiv 3$ $(\bmod 4)$ and $n \equiv 1(\bmod 4)$.

