HEATHER JORDON, American Mathematical Society

Directed Cycle Systems via Signed Langford Sequences
For positive integers d and t, a Langford sequence of order t and defect d is a sequence $\mathcal{L}_{d}^{t}=\left(s_{1}, \ldots, s_{2 t}\right)$ of length $2 t$ that satisfies (i) for every $k \in\{d, d+1, \ldots, t+d-1\}$, there are exactly two elements $s_{i}, s_{j} \in \mathcal{L}_{d}^{t}$ such that $s_{i}=s_{j}=k$ and (ii) if $s_{i}=s_{j}=k$ with $i<j$, then $j-i=k$. Note that (ii) could be written as $j-i-k=0$ or $i+k-j=0$. Hence, one generalization of a Langford sequence is as follows. For positive integers d and t, a signed Langford sequence of order t and defect d is a sequence $\pm \mathcal{L}_{d}^{t}=\left(s_{-2 t}, s_{-2 t+1}, \ldots, s_{-1}, *, s_{1}, \ldots, s_{2 t}\right)$ of length $4 t+1$ that satisfies (i) for every $k \in \pm\{d, d+1, \ldots t+d-1\}$, there are exactly two elements $s_{i}, s_{j} \in \pm \mathcal{L}_{d}^{t}$ such that $s_{i}=s_{j}=k$ and (ii) if $s_{i}=s_{j}=k$ with $i<0<j$, then $i+j+k=0$. In this talk, we give necessary and sufficient conditions for the existence of a signed Langford sequence of order t and defect d for all positive integers d. We will then use these sequences to find cyclic decompositions of circulant digraphs into directed m-cycles for $m \geq 3$. In particular, we find a cyclic m-cycle decomposition of the complete symmetric digraph $K_{2 m+1}^{*}$ for all $m \geq 3$.

