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We introduce deep neural architecture types with inputs from a separable and locally-compact metric space X and outputs
in the Wasserstein- 1 space over a separable metric space Y. We establish the density of our architecture type in C(X; P1(Y
)), quantitatively. NB that our results are new even in the case where X and Y are Euclidean, in which case, we find that
many commonly used types such as MDNs and MGANSs are universal special cases of our model type. We show that our
models approximate functions in C(X; P1(Y )) by implementing e-metric projections in the Wasserstein- metric onto the hull
of certain finite families of measures therein. If the target function can be represented as a mixture of finitely many functions,
each taking values in a finite-dimensional topological submanifold of the Wasserstein space, we find that the approximating
networks can be assumed to have bounded width. As applications of our results, we address the following problems. We
show that, under mild conditions, our architecture can approximate any regular conditional distribution of an X-valued random
element X depending on a Y -valued random element Y with arbitrarily high probability. Consequentially, we show that once
our approximation of this regular conditional distribution is learned, any conditional expectation of the form E[f(X; Y )|Y =]
for Caratheodory f with uniformly-Lipschitz first component and a uniformly-bounded second component, is approximable by
standard Monte-Carlo sampling against the learned measure. We illustrate our theory in the context of stochastic processes.



