BOAZ SLOMKA, Weizmann Institute of Science
On Hadwiger's covering problem
A long-standing open problem, known as Hadwiger's covering problem, asks what is the smallest natural number $N(n)$ such that every convex body in \mathbb{R}^{n} can be covered by a union of the interiors of at most $N(n)$ of its translates.
In this talk, I will present a recent work in which we prove a new upper bound for $N(n)$. This bound improves Rogers' previous best bound, which is of the order of $\binom{2 n}{n} n \ln n$, by a sub-exponential factor. Our approach combines ideas from previous work with tools from asymptotic geometric analysis. As a key step, we use thin-shell estimates for isotropic log-concave measures to prove a new lower bound for the maximum volume of the intersection of a convex body K with a translate of $-K$. We further show that the same bound holds for the volume of $K \cap(-K)$ if the center of mass of K is at the origin.
If time permits we shall discuss some other methods and results concerning this problem and its relatives.
Joint work with H. Huang, B. Vritsiou, and T. Tkocz

