## SAM HARRIS, University of Waterloo

Separating the matrix-valued bipartite correlation sets
In recent years, there has been much study devoted to various sets of quantum bipartite correlations in a finite-input, finiteoutput system. These sets are often denoted by $C_{t}(m, k)$, where $m$ is the number of inputs, $k$ is the number of outputs, and $t$ represents the model that is being used. Some of the most notable models are the finite-dimensional (tensor product) model $(t=q)$ and the tensor product model $(t=q s)$. Thanks to recent work of W . Slofstra, it is known that $C_{q s}(m, k)$ is not a closed set if $m$ and $k$ are large enough. Recent work of A . Coladangelo and J. Stark shows that $C_{q}(5,3) \neq C_{q s}(5,3)$. In this talk, we consider a matrix-valued generalization of these sets, denoted $C_{t}^{(n)}(m, k)$, where Alice and Bob have access to $n$ (orthonormal) states instead of just 1 . We show that there is some $n \leq 13$ such that, whenever $m, k \geq 2$ and $(m, k) \neq(2,2)$, we have that $C_{q}^{(n)}(m, k) \neq C_{q s}^{(n)}(m, k)$ and that $C_{q s}^{(n)}(m, k)$ is not a closed set. This is based on joint work with Li Gao and Marius Junge.

